CEL -Power Electronics and Electromechanical Systems

T007

Thursday, 10/11/2016 08:30 - 11:30 WORKFORCE DEVELOPMENT AUTHORITY

P.O. BOX 2707 Kigali, Rwanda Tel: (+250) 255113365

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2016, TECHNICAL AND PROFESSIONAL STUDIES

EXAM TITLE: Power Electronics and Electromechanical

Systems

OPTION:

Computer Electronics (CEL)

DURATION:

3hours

INSTRUCTIONS:

The paper is composed of three (3) main Sections as follows:

Section I: Fourteen (14) compulsory questions.

55 marks

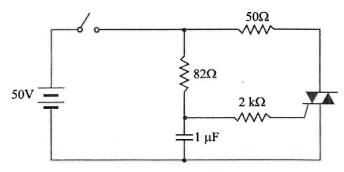
Section II: Attempt any three (3) out of five questions.

30 marks

Section III: Attempt any one (1) out of three questions.

15 marks

Note:


Every candidate is required to carefully comply with the above instructions. Penalty measures will be applied on their strict consideration.

01. Define the following terms:	5	marks
a. Thyristorsb. Triacs		
02. Give at least four types of power se	miconductor devices can be divided broa	adly into
five types.	4m:	arks
03. Put the appropriate response in the	dotted line place. 5	marks
A. A UJT has		
 two pn junctions one pn junction three pn junctions none of the proposed an 	swers	
B. The normal way to turn on a diac is	s by	
gate current gate voltage breakover voltage none of the proposed an C. The device that does not have the g		
 Triac FET SCR diac D. A diac is turned ON by 		
•	••••	
 breakover voltage gate voltage gate current none of the proposed an E. When the temperature increases, the 	swers ne interbase resistance (RBB) of a UJT	æ
 increases decreases remains the same none of the proposed an 		
04. What is the purpose of connecting	antipallel power diode across the load	in power
electronics circuit?	;	3marks
05. What is the normal way of turning O	N the SCR?	2marks
06. How can you control an AC power in	a load?	2marks
07. Which part of SCR loses all controls	when that SCR starts conducting?	2marks
08. A thyristor is a Charge controlled de	vice. Explain.	5marks
09. Give at least four important applicat		
	-	4marks
10 Give at least four features of an idea	l power switch device.	4marks

11. Briefly discuss the requirements of power supplies.

- 3marks
- 12. In the figure below shows the switch is closed. If the triac has fired, what is the current through 50Ω resistor when:
 - (i) triac is ideal
 - (ii) triac has a drop of 1V?

6marks

- 13. The intrinsic stand-off ratio for a Unijunction Transistor (UJT) is determined to be 0.6. If the inter-base resistance R_{BB} is 10 k Ω , what are the values of base-one resistance RB1 and base-two resistance R_{B2} ?

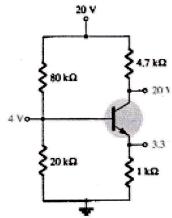
 6marks
- 14. What will be the effect of connecting the impedance connected to one side of a transformer?
 4marks

Section II. Choose and answer any three (3) questions.

30marks

15. What are advantages and disadvantages of bipolar junction transistors (BJT'S)?

10marks


16. Explain the working operation of Triac.

10marks

17. Why do we use transistors connected (a) in series? (b) In parallel?

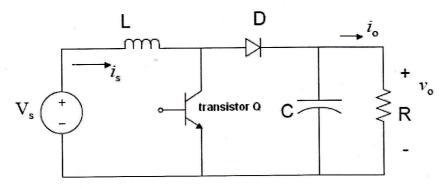
10marks

18. Based on the readings appearing in circuit below, determine whether the transistor is "ON" and the network is operating properly.10marks

19. Calculate the peak-load current in an SCR half-wave rectifier circuit that will occur if we measure an average (d.c.) load current of 1A at a firing angle of 30°?

10marks

Section III. Choose and answer any one (1) question.


15marks

20. Explain the methods of turning ON Thyristor?

15marks

- 21. The light of a 100W, 220V tungsten lamp is to be varied by controlling the firing angle of an SCR in a half-wave rectifier circuit supplied with 220V a.c.
 - (a) What r.m.s (root mean square) voltage and current are developed in the lamp at firing angle $\alpha = 60^{\circ}$?
 - (b) What r.m.s (root mean square) voltage and current are developed in the lamp at firing angle α = 60°? For an SCR in a half-wave rectifier circuit while other parameters remain unchanged.
- 22. The step-up dc-dc converter shown in the circuit below is operated at a switching frequency of fs = 20 kHz.
 - (a) For R = 20 Ω find the duty ratio k so that the average power supplied to the load is measured at Pav = 500 W.
 - (b) For k=0.7 find the maximum value of the load resistance R so that the source current is becomes continuous.

 15marks

The step-up dc-dc converter circuit

With:

Vs = 40V

L=500µH